
Intelligent
TestAutomation

IL
LU

S
TR

AT
IO

N
S

 B
Y

 S
TE

V
E

 B
JÖ

R
K

M
A

N

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 2000
24

Tools & AutomationTools & Automation

A model-based method for generating
tests from a description of an
application’s behavior by Harry Robinson

Warning: The fairy tale you are about to read is a fib—but it’s short, and the moral is true.

Once upon a product cycle, there were four testers who set
out on a quest to test software.

started hands-on testing imme-
diately, and found some nice bugs. The develop-
ment team happily fixed these bugs, and gave
Tester 1 a fresh version of the software to test.
More testing, more bugs, more fixes.

Tester 1 felt productive, and was happy—at
least for a while.

After several rounds of this find-and-fix cycle,
he became bored and bleary-eyed from running
virtually the same tests over and over again by
hand. When Tester 1 finally ran out of enthusi-

asm—and then out of patience—the software
was declared “ready to ship.”

Customers found it too buggy and bought
the competitor’s product.

Tester1

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

September/Oc tobe r 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
25

QUICK LOOK

■ Improving the efficiency of your
automated testing through modeling

■ Overcoming the limitations of hands-on
and static automation testing

started testing by hand, but soon de-
cided it made more sense to create test scripts that
would perform the keystrokes automatically. After
carefully figuring out tests that would exercise useful
parts of the software, Tester 2 recorded the actions in
scripts. These scripts soon numbered in the hun-
dreds. At the push of a button, the scripts would
spring to life and run the software through its paces.

Tester 2 felt clever, and was happy—at least for
a while.

The scripts required a lot of maintenance when
the software changed. He spent weeks arguing
with developers to stop changing the software be-
cause it broke the automated tests. Eventually,
the scripts required so much maintenance that

there was little time left to do testing.
When the software was released,

customers found lots of bugs that the
scripts didn’t cover. They stopped buy-
ing the product and decided to wait for
version 2.0.

Tester2

didn’t want to maintain hundreds of automated
test scripts. She wrote a test program that went around randomly
clicking and pushing buttons in the application. This “random”
test program was hypnotic to watch, and it found a lot of crash-

ing bugs.
Tester 3 enjoyed uncovering such dramatic defects,
and was happy—at least for a while.

Since the random test program could only
find bugs that crashed the application, Tester 3
still had to do a lot of hands-on testing, getting
bored and bleary-eyed in the process. Cus-
tomers found so many functional bugs in the
software when it was released that they lost
trust in the company and stopped buying its
software.

Tester3

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

Commentaries
These four scenes show some of the approaches available
in software testing today.

Tester 1 is a typical hands-on tester, manually running all
tests from the keyboard. Hands-on testing is common
throughout the industry today—it provides immediate ben-
efits, but in the long run it is tedious for the tester and ex-
pensive for the company.

“One of the saddest sights to me has always been a hu-
man at a keyboard doing something by hand that could
be automated. It’s sad but hilarious.”

—Boris Beizer, Black-Box Testing: Techniques for
Functional Testing of Software and Systems

Tester 2 practices what I call “static test automation.” Static
automation scripts exercise the same sequence of com-

mands in the same order every time. These scripts are cost-
ly to maintain when the application changes. The tests are
repeatable; but since they always perform the same com-
mands, they rarely find new bugs.

“Highly repeatable testing can actually minimize the
chance of discovering all the important problems, for
the same reason that stepping in someone else’s foot-
prints minimizes the chance of being blown up by a
land mine.”

—James Bach, “Test Automation Snake Oil,”
Windows Tech Journal, October 1996

Tester 3 operates closer to the cutting edge of automated
testing. These types of “random” test programs are called
dumb monkeys because they essentially bang on the key-
board aimlessly. They come up with unusual test action se-
quences and find many crashing bugs, but it’s hard to

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 2000
26

began with hands-on, exploratory testing to become familiar with the application—
and used the knowledge gained during the hands-on testing to create a very simple behavioral model
of the application. Tester 4 then used a test program to test the application’s behavior against what the

model predicted. The behavioral model was much
simpler than the application under test, so it was
easy to create. Since the test program knew what
the application was supposed to do, it could detect
when the application was doing the wrong thing.

As the product cycle progressed, developers
wrote new features for the application. Tester 4
quickly updated the model, and the tests contin-
ued running. The program ran day and night, con-
stantly generating new test sequences. Tester 4
was able to run the tests on a dozen machines at
once and get several days of testing done in a sin-
gle night.

After several rounds of testing and bug fixes,
Tester 4’s test generator began to find fewer bugs.
Tester 4 upgraded the model to test for additional
behaviors and continued testing. Tester 4 also did
some hands-on testing and static automation for
those parts of the application which were not yet
worth modeling.

When Tester 4’s software was released, there
were very few bugs to be found. The customers
were happy. The stockholders were happy.

And Tester 4 was happy.

Tester4

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 2000
28

direct them to the specific parts of the
application you want tested. Since they
don’t know what they are doing, they
miss obvious failures in the application.

“Monkey testing should not be your
only testing. Monkeys don’t under-
stand your application, and in their
ignorance they miss many bugs.”
—Noel Nyman, “Using Monkey Test Tools,”

STQE, January/February 2000

Tester 4 combines the other testers’ ap-
proaches with a type of intelligent test
automation called “model-based test-
ing.”

Model-based testing doesn’t record
test sequences verbatim like static test automation does,
nor does it bang away at the keyboard blindly. Model-based
tests use a description of the application’s behavior to de-
termine what actions are possible and what outcome is ex-
pected. This automation generates new test sequences end-
lessly, adapts well to changes in the application, can be run
on many machines at once, and can run day and night.

“[An artist] paints with his brain, not with his hands.”
—Michelangelo Buonarroti

The Moral of the Story
Tester 1’s method required that his hands always be at
work on the keyboard. Eventually Tester 1’s brain and
hands gave out.

Tester 2’s static scripts repeated keyboard actions that
his hands had already performed.

Tester 3’s monkeys were essentially brainless hands
banging on the keyboard.

Tester 4, on the other hand, supplemented the others’
techniques by:

■ thinking about the application’s behavior,

■ describing that behavior to a test generator, and

■ letting the test generator create and run test cases.

By generating tests from a description of the application’s
behavior, Tester 4 could perform tests that were not practi-
cal under the other test approaches.

The moral of the tale: Automate your brain, not just
your hands.

Use Your Brain
Let’s look at an example of creating and using a behavioral
model to test a software application.

Hands-on testing is a good way to start the test automa-
tion process. I call this phase “exploratory modeling” be-
cause it combines exploratory testing with the discovery of
a model that can later be used to generate tests. As you be-
gin to understand the behavior of each action, you can cre-

ate rules that will help you model and test the application.
This is the essence of model-based testing: To describe

the behavior you expect in a way that can be used to gener-
ate tests. Ask yourself the following two questions for every
action you are going to test:

1. When is this action possible?

2. What is the outcome when this action is executed?

For instance, suppose you have been asked to test the be-
havior of files in a Windows folder. In particular, you are go-
ing to test the Create, Delete, and Invert Selection actions.

Modeling the “Create” Action

■ When is Create possible? This example is kept simple by limiting the
number of files in the folder to 1 File. Therefore Create is only possi-
ble in this model when there are 0 Files in the folder.

■ What is the outcome when Create is executed? When you Create a
new file in a folder, the number of files in the folder increases by one.
The newly created file is initially Selected, so it appears highlighted in
the folder. In fact, the new file is the only Selected file in the folder, no
matter how many were Selected before the Create action.

Modeling the “Delete” Action

■ When is Delete possible? Delete is only possible in this model when
there is at least 1 Selected File in the folder.

■ What is the outcome when Delete is executed? When you execute the
Delete action, any Selected file disappears from the folder.

Modeling the “Invert Selection” Action

■ When is Invert Selection possible? Invert Selection is always pos-
sible in this model, even when there are 0 Files in the folder.

■ What is the outcome when Invert Selection is executed? When you
execute the Invert Selection action, all Selected files in the folder be-
come Unselected, and all Unselected files become Selected. When
there are 0 Files in the folder, Invert Selection leaves the folder un-
changed.

Hands-on testing is a good way to start the test

automation process. I call this phase “exploratory modeling”

because it combines exploratory testing with the

discovery of a model that can later be used to generate

tests. As you begin to understand the behavior

of each action, you can create rules that will help you

model and test the application.

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

A
N

N
IE

 B
IS

S
E

TT

September/Oc tobe r 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
29

Creating a
State Model
You can now construct what is
called a “state model” of the sys-
tem’s behavior, as shown in Figure
1. It incorporates all the behaviors
described above. Note the way the
Invert Selection action loops from
the 0 Files State back to the 0 Files
State. That models the way Invert
Selection does nothing if there’s
nothing to invert.

Very Pretty. So What?
Now that you understand how the
application works, you could man-
ually test these actions and verify
whether the Windows folder be-
haves as you expect. However, be-
cause your understanding is being
carried around inside your head,
your results are limited by your
time and your stamina.

On the other hand, if you
could somehow communicate this
state model directly from your
brain to a computer, it could gener-
ate and execute tests on the system
for you.

Fortunately, this model can be
represented in a format known as a
“state table” that the computer can
read. Each row of the state table (see Table 1) shows the
Ending State that will result when an action is applied to
the application in the Starting State.

Use the Computer’s Brain, Too
Once we have put the state model into a state table that the
computer can understand, what can the computer do for
us? How can we exploit our information about the applica-
tion’s behavior?

The computer can use the state table to generate se-
quences of tests to run against the application. As you will
see in the following examples, these test sequences can be
chosen for their novelty, their effi-
ciency of testing, or their exhaus-
tiveness. This test generation is a
powerful way to apply your under-
standing—and this is what model-
based testing is all about.

A Random Walk Through
the State Model
One simple way to generate test
actions is to randomly select any
available action from the current
state of the application. For ex-
ample, if you are in the 0 Files

Starting State, you can choose either of these two
actions:

■ Invert Selection (which leaves you in the 0 Files State)

■ Create (which leaves you in the 1 Selected File State)

By choosing random actions in this way, you can generate
many unusual sequences (just like Tester 3’s random
“monkey test program”), and you will eventually exercise
all of the actions in the model. Figure 2 shows a typical
random walk. Notice that the random walk executed the
same action (Invert Selection) four times in a row, but has

Create Invert
Selection

Invert Selection

Invert
Selection

Delete

0 Files 1 Selected File 1 Unselected File

FIGURE 1 The state model

Starting State Action Ending State

0 Files Invert Selection 0 Files

0 Files Create 1 Selected File

1 Selected File Invert Selection 1 Unselected File

1 Selected File Delete 0 Files

1 Unselected File Invert Selection 1 Selected File

TABLE 1 A state table for behavior of files in a Windows folder

Create Invert
Selection

Invert Selection

Invert
Selection

Delete

0 Files 1 Selected File 1 Unselected File

1 2

3

4

5

FIGURE 2 A random walk

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

so far left two other actions untouched. Such is the nature
of random testing.

A C T I O N T O E X E C U T E E N D I N G S TAT E

1 . Create 1 Selected File
2 . Invert Selection 1 Unselected File
3 . Invert Selection 1 Selected File
4 . Invert Selection 1 Unselected File
5 . Invert Selection 1 Selected File

An Efficient Walk Through the State Model:
The Chinese Postman Walk
Random walks are inefficient at reaching all test actions
when the model is large. How can we test each of the ac-
tions in the model efficiently?

This turns out to be the same problem a letter carrier
faces when delivering mail. Imagine that each of the actions
in the model is a street where mail must be delivered—and
that each of the states in the model is an intersection where
the letter carrier can change direction. Just as the letter car-
rier must travel down each street to deliver the mail, we must
test each action in the model. And in both cases, we would
like to minimize the amount of additional travel needed.

A Chinese mathematician named Kwan Mei-Ko formu-
lated an elegant solution to this problem, and it is known as
the Chinese Postman algorithm in his honor (see Figure 3).
Kwan’s method generates a path through the state model
that exercises every action in the model in the fewest num-
ber of steps. The test sequence listed below covers all five
actions in the model in only five steps. This efficiency can
be handy if you have a large application that you want to
test quickly.

A C T I O N T O E X E C U T E E N D I N G S TAT E

1 . Invert Selection 0 Files
2 . Create 1 Selected File
3 . Invert Selection 1 Unselected file
4 . Invert Selection 1 Selected File
5 . Delete 0 Files

An Even More Efficient Walk: The State-
Changing Chinese Postman Walk
Some actions in a model—such as hitting Invert Selection
with 0 Files in the folder—do not change the state of the ap-

plication. If you think that bugs are
more likely to occur where the ap-
plication changes state, you may
want to prioritize your efforts by
first testing the state-changing ac-
tions.

A simple way to do this is to
filter out from the state table any
actions that don’t change the state.
In Table 1, that would remove the
first action (Invert Selection).

Running the Chinese Postman
algorithm over this reduced state
model generates a test sequence
that covers all of the model’s
state-changing actions in four
steps—essentially removing the

first step of the previous example:

A C T I O N T O E X E C U T E E N D I N G S TAT E

1 . Create 1 Selected File
2 . Invert Selection 1 Unselected File
3 . Invert Selection 1 Selected File
4 . Delete 0 Files

Shortest Round Trips Back to the
Starting State
Suppose you want to exhaustively test every sequence that
takes the Windows folder from the 0 Files State back to the 0
Files State in a certain number of steps or less? Sequences
like these that constantly generate new variations would be
unthinkable for Tester 2’s static automation.

It is trivial for a computer to generate a list of such
paths from the state model. You can generate sequences of
increasing length as long as you have computer cycles to
burn, probing deeper and deeper into the model.

Figure 4 shows all round trips that start at the 0 Files
State and have a path length less than or equal to four steps.

Path A has a length of one step:
A1: Invert Selection

Path B has a length of two steps:
B1: Create
B2: Delete

Path C has a length of four steps:
C1: Create
C2: Invert Selection
C3: Invert Selection
C4: Delete

Use the Computer’s Hands
The output of each of these algorithms is a sequence of test
actions to execute. What would be the best way to perform
these actions? You could hand a human tester the list of ac-
tions to execute by hand—but this would be slow, tedious,
and cruel. Who would want to spend their day executing
lists of actions? Such repetitious work is the kind of mind-
numbing scenario that caused poor Tester 1 such grief. A

N
N

IE
 B

IS
S

E
TT

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 2000
30

Create Invert
Selection

Invert Selection

Invert
Selection

Delete

0 Files 1 Selected File 1 Unselected File

1

2
3

45

FIGURE 3 A Chinese Postman walk

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

Instead, you can write a simple test execution program
that will read the list and then execute test code for each
action in that list.

For instance, in Visual Test, the code to implement the
Create action is:

WToolbarButtonClick("@1","File") ' Open the File menu
WMenuSelect("New") ' Select New File
WMenuSelect("Text Document") ' Choose Text Document
Play "{Enter}" ' Accept the default filename

In typical static automation, this code would be embedded
in a script—but in a model-based test program, this snippet
of code is invoked whenever the list of test actions says to
perform the Create action.

Use the Computer’s Eyes
Automating the test actions is only half the battle. You also
need an automated method of determining if the applica-
tion is working correctly.

This method—a function that determines if the appli-
cation has behaved correctly in response to a test action—
is called a test oracle. Some test methods, such as Tester
3’s random monkey test programs, must rely on crude test
oracles such as whether the application has crashed.

Model-based testing gives the test program the ability to
check for indicators of good behavior more subtle than
“didn’t crash.” From the information in the state table, the
model “knows” what actions should be available from each
state and the expected outcome of each action. For instance,
the model says that the test pro-
gram should be able to execute the
Delete action from the 1 Selected File
State. The model also says that exe-
cuting that Delete action should
leave the application in the 0 Files
State. This knowledge provides two
ways to verify that the application
has behaved correctly.

First, the test program can de-
tect if an action is not available
when it should be. If the Delete ac-
tion is not available when the ap-

plication is in the 1 Selected File
State, the test program will report
an error because the test code will
fail when it finds no menu selec-
tion for Delete.

Second, the model is always
aware of what state the application
should be in. Knowing the expected
ending state of each action means
that we can create test oracle rou-
tines to check (at the conclusion of
each action) that the appropriate
number of files are present and se-
lected in the folder. For instance,
when the Delete action above is exe-
cuted, the Ending State should
have 0 Files in the folder (and of

course, 0 Files Selected).
Programmatic test languages usually provide functions

that allow the test program to verify aspects of the application.
Two useful Visual Test functions for the current model are:

■ WViewCount() which indicates the number of files in the folder, and

■ WViewItemSelected() which tells how many files in the folder are
Selected.

The test program can verify that the application is in the
correct state, as shown in Table 2.

The Delete action discussed above should leave the ap-
plication in the 0 Files State. If WViewCount() returns a value
other than 0, the test program oracle will report an error
because the number of files in the folder is incorrect.

How to Update Model-based Tests
Remember how Tester 2’s static test automation attempts
were frustrated by application changes? Tester 4, in con-
trast, was able to adapt the model-based test automation
quickly to changes in the application.

Incorporating New Actions into the Model
Suppose your development team tells you that they have im-
plemented the Select All action. How should you update your
tests for this new action? Simple—upgrade the state model
to incorporate the Select All action, and regenerate the tests.

First, you model the Select All action by answering our
two basic questions:

A
N

N
IE

 B
IS

S
E

TT

September/Oc tobe r 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
31

Create Invert
Selection

Invert Selection

Invert
Selection

Delete

0 Files 1 Selected File 1 Unselected File

A1

B1

B2

C1 C2

C3C4

FIGURE 4 All round trips in four steps or less

Expected Return Expected Return
Value of Value of

Application State WViewCount() WViewItemSelected()

0 Files 0 0

1 Selected File 1 1

1 Unselected File 1 0

TABLE 2 A state table showing Visual Test functions WViewCount() and
WViewItemSelected()

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

1. When is Select All possible?
Select All is always possible in
this model, even when there
are 0 Files in the folder.

2. What is the outcome when
Select All is executed? When
you execute Select All, all the
files in the folder become Se-
lected. If there are 0 Files in
the folder, Select All leaves
the folder unchanged. This is
indicated in the illustration
below, where the Select All
action loops from the 0 Files
State back to the 0 Files
State.

Figure 5 shows the new state mod-
el with the Select All action incorporated.

Running the Chinese Postman algorithm on the updat-
ed model (see Figure 6) gives a nine-step test sequence—
using the 0 Files Starting State—that exercises every action
in the model, including the new Select All:

A C T I O N T O E X E C U T E E N D I N G S TAT E

1 . Invert Selection 0 Files
2 . Create 1 Selected File
3 . Invert Selection 1 Unselected File
4 . Select All 1 Selected File
5 . Invert Selection 1 Unselected File
6 . Invert Selection 1 Selected File
7 . Select All 1 Selected File
8 . Delete 0 Files
9 . Select All 0 Files

The next step would be to determine the code that is used
to invoke the Select All action whenever it occurs in the test
sequence. For Visual Test it would be as follows:

WToolbarButtonClick("@1","Edit")
WMenuSelect("Select All")

In Summary
It can take significant effort to un-
derstand and model an applica-
tion. And it can be difficult to
leave the easy path of hands-on
testing or static automation long
enough to invest time thinking
about how to test that applica-
tion—as we saw in the trials and
tribulations of our fairy tale’s four
testers.

The rewards, however, are
great:

■ Model-based testing creates flexible,
useful test automation from practically
the first day of development.

■ Models are simple to modify, so model-based tests are economical to
maintain over the life of a project.

■ Models can generate innumerable test sequences tailored to your
needs.

■ Models allow you to get more testing accomplished in a shorter
amount of time because a test generator can create and verify test se-
quences around the clock on multiple machines.

■ Model-based testing can supplement other forms of testing, and can
perform tests that aren’t practical under other test approaches.

You and I know that software testing is no fairy tale, and that
happily-ever-afters are never guaranteed. But adding model-
based intelligence to your testing is a powerful tool to help
you find your way toward your own happy ending. STQE

Harry Robinson is software test lead with the Intelligent
Search Group at Microsoft. He maintains the Model-
Based Testing Home Page (www.model-based-testing.org),
and is a long-time advocate and practitioner of model-
based testing.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing September/Oc tobe r 2000
32

Create Invert
Selection

Invert Selection

Invert
Selection

Delete

Select All Select All

Select All

0 Files 1 Selected File 1 Unselected File

1

2 3

4

5

6
7

8
9

FIGURE 6 A Chinese Postman walk on the new state model

Create Invert
Selection

Invert Selection

Invert
Selection

Delete

Select All Select All

Select All

0 Files 1 Selected File 1 Unselected File

FIGURE 5 State model including Select All

A
N

N
IE

 B
IS

S
E

TT

This article is provided courtesy of Software Testing & Quality Engineering (STQE) magazine.

